Main Article Content
Abstract
Artificial Intelligence is advancing rapidly, promising efficient and effective learning methodologies in the educational sector, including the higher education sector. In particular, AI has facilitated the customization and enhancement of students’ learning experiences. Apart from technological factors, personality traits play a role in the extent to which students adopt AI. This study investigated how students’ personality traits from a postgraduate institution influence their attitude toward AI and their willingness to adopt new technology. This study employed a thematic qualitative methodology. In-depth interviews and focus group discussions were conducted to collect data. The findings suggest that the relationship between personality traits and attitudes toward adopting new AI technology is complex. On one hand, personality traits seem to influence the adoption of AI technology. On the other hand, the perceived usefulness of AI technology also appears to trigger personality traits and encourage them to adopt new technology. Furthermore, self-efficacy and positive experiences indirectly influence the adoption of the technology, whereas negative experiences enhance caution in using the technology without necessarily discouraging its use.
Keywords
Article Details
Copyright (c) 2025 Marie-Anne Razafiarivony , Janet N. Odhiambo

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
- Aderibigbe, A. O., Ohenhen, P. E., Nwaobia, N. K., Gidiagba, J. O., & Ani, E. C. (2023). Artificial intelligence in developing countries: Bridging the gap between potential and implementation. Computer Science & IT Research Journal, 4(3), 185-199. https://doi.org/10.51594/csitrj.v4i3.629
- Ajibade, P. (2018). Technology Acceptance model limitations and criticisms: exploring the practical applications and use in technology-related studies, mixed-method, and qualitative research. Library Philosophy and Practice (e-journal). 1941. http://digitalcommons.unl.edu/libphilprac/1941
- Al-Kfairy, M. (2024). Factors impacting the adoption and acceptance of ChatGPT in educational settings: A narrative review of empirical studies. Applied System Innovation, 7(6), 110. https://doi.org/10.3390/asi7060110
- Almaiah, M. A., Alfaisal, R., Salloum, S. A., Hajjej, F., Thabit, S., El-Qirem, F. A., Lufti, A., Alrawad, M., Mulhem, A. A., Alkhdour, T., Awad, A. B. & Al-Maroof, R. S. (2022). Examining the impact of artificial intelligence and social and computer anxiety in e-learning settings: students’ perceptions at the university level. Electronics, 11(22), 3662, 1-122. https://doi.org/10.3390/electronics11223662
- Al Mesmari, S. (2023). Transforming data into actionable insights with cognitive computing and AI. Journal of Software Engineering and Applications, 16(6), 211-222. https://doi.org/10.4236/jsea.2023.166012
- Alqahtani, T., Badreldin, H. A., Alrashed, M., Alshaya, A. I., Alghamdi, S. S., bin Saleh, K., Alowais, S. A., Alshaya, O. A., Rahman, I., Al Yami, M. S. & Albekairy, A. M. (2023). The emergent role of artificial intelligence, natural learning processing, and large language models in higher education and research. Research in Social and Administrative Pharmacy, 19(8), 1236-1242. https://doi.org/10.1016/j.sapharm.2023.05.016
- Barnett, T., Pearson, A. W., Pearson, R., & Kellermanns, F. W. (2015). Five-factor model personality traits as predictors of perceived and actual usage of technology. European Journal of Information Systems, 24(4), 374-390. https://doi.org/10.1057/ejis.2014.10
- Barrows, J., Dunn, S., & Lloyd, C. A. (2013). Anxiety, self-efficacy, and college exam grades. Universal Journal of Educational Research, 1(3), 204-208. https://doi.org/10.13189/ujer.2013.010310
- Bleidorn, W., Hopwood, C. J., & Lucas, R. E. (2018). Life events and personality trait change. Journal of Personality, 86(1), 83-96. https://doi.org/10.1111/jopy.12286
- Boguslawski, S., Deer, R., & Dawson, M. G. (2024). Programming education and learner motivation in the age of generative AI: student and educator perspectives. Information and Learning Sciences. https://dx.doi.org/10.1108/ILS-10-2023-0163
- Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3, 77–101. https://doi.org/10.1191/1478088706qp063oa
- Chen, Y., Jensen, S., Albert, L. J., Gupta, S., & Lee, T. (2023). Artificial intelligence (AI) student assistants in the classroom: Designing chatbots to support student success. Information Systems Frontiers, 25(1), 161-182. https://doi.org/10.1007/s10796-022-10291-4
- Chen, D., Liu, W., & Liu, X. (2024). What drives college students to use AI for L2 learning? Modeling the roles of self-efficacy, anxiety, and attitude based on an extended technology acceptance model. Acta Psychologica, 249, 104442. 1- 9. https://doi.org/10.1016/j.actpsy.2024.104442
- Crompton, H., & Burke, D. (2023). Artificial intelligence in higher education: the state of the field. International Journal of Educational Technology in Higher Education, 20(1), 22. https://doi.org/10.1186/s41239-023-00392-8
- Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, January-February, 108-116.
- Devaraj, S., Easley, R. F., & Crant, J. M. (2008). Research note how does personality matter? Relating the five-factor model to technology acceptance and use. Information Systems Research, 19(1), 93–105. https://doi.org/10.1287/isre.1070.0153
- Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
- Duarte, R., Nobre, Â. L., & De Oliveira Pires, A. L. (2018). Mature Learners’ Participation in Higher Education and Flexible Learning Pathways: Lessons Learned from an Exploratory Experimental Research (pp. 33–53). Springer. https://doi.org/10.1007/978-981-10-8917-6_2
- Felix, C. V. (2020). The role of the teacher and AI in education. In International perspectives on the role of technology in humanizing higher education (pp. 33-48). http://dx.doi.org/10.1108/S2055-364120200000033003
- George, A. S. (2023). Preparing students for an AI-driven world: Rethinking curriculum and pedagogy in the age of artificial intelligence. Partners Universal Innovative Research Publication, 1(2), 112-136. https://doi.org/10.5281/zenodo.10245675
- Goodhue, D. (2007). Comment on Benbasat and Barki’s "Quo Vadis TAM" article. Journal of the Association for Information Systems, 8 (4), 219-222.
- Grönroos, C. (1998). Marketing services: the case of a missing product. Journal of business & industrial marketing, 13(4/5), 322-338. https://doi.org/10.1108/08858629810226645
- Hannan, E., & Liu, S. (2023). AI: new source of competitiveness in higher education. Competitiveness Review: An International Business Journal, 33(2), 265-279. https://doi.org/10.1108/CR-03-2021-0045sh
- Hassan, S., Akhtar, N., & Yılmaz, A. K. (2016). Impact of the conscientiousness as a personality trait on both job and organizational performance. Journal of Managerial Sciences, 10(1). https://qurtuba.edu.pk/jms/default_files/JMS/10_1/JMS_January_June2016_1-14.pdf
- Hong, J. C., Zhang, H. L., Ye, J. H., & Ye, J. N. (2021). The effects of academic self-efficacy on vocational students behavioral engagement at school and at firm internships: A model of engagement-value of achievement motivation. Education Sciences, 11(8), 387. https://doi.org/10.3390/educsci11080387
- Hutson, J., Jeevanjee T., Vander Graaf, V., Lively, J., Weber, J., Weir, G., Arnone, K., Carnes, G., Vosevich, K., Plate, D., Leary, M., & Edele, S. (2022). Artificial intelligence and the disruption of higher education: Strategies for integrations across disciplines. Creative Education, 13(12), 3953-3980. https://dx.doi.org/10.4236/ce.2022.1312253
- Ivanov, S. (2023). The dark side of artificial intelligence in higher education. The Service Industries Journal, 43, 15-16, 1055-1082, https://doi.org/10.1080/02642069.2023.2258799
- Jie, A. L. X., & Kamrozzaman, N. A. (2024). The challenges higher education students face in using artificial intelligence (AI) against their learning experiences. Open Journal of Social Sciences, 12, 362-387. https://doi.org/10.4236/jss.2024.1210025
- Kim, J., Kadkol, S., Solomon, I., Yeh, H., Soh, J. Y., Nguyen, T. M., Choi, J. Y., Lee, S., Srivatsa, A. V., Nahass, G. R., & Ajilore, O. A. (2023). AI anxiety: A comprehensive analysis of psychological factors and interventions. SSRN Electronic Journal 4573394. https://doi.org/10.2139/ssrn.4573394
- King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information & management 43(6): 740-755. https://doi.org/10.1016/j.im.2006.05.003
- Kshetri, N. (2020)."Artificial intelligence in developing countries” IEEE IT Professional, 22(4) 63 - 68. https://doi.org/10.1109/MITP.2019.2951851
- Li, J., & Huang, J. S. (2020). Dimensions of artificial intelligence anxiety based on the integrated fear acquisition theory. Technology in Society, 63, 101410. https://doi.org/10.1016/j.techsoc.2020.101410
- Lievano-Martínez, F. A., Fernández-Ledesma, J. D., Burgos, D., Branch-Bedoya, J. W., & Jimenez-Builes, J. A. (2022). Intelligent Process Automation: An Application in Manufacturing Industry. Sustainability, 14, 8804. https://doi.org/10.3390/su14148804
- Lucas, R. E., & Donnellan, M. B. (2011). Personality development across the life span: Longitudinal analyses with a national sample from Germany. Journal of Personality and Social Psychology, 101, 847–861. https://psycnet.apa.org/doi/10.1037/a0024298
- Malerbi, F. K., Nakayama, L. F., Dychiao, R. G., Ribeiro, L. Z., Villanueva, C., Celi, L. A., & Regatieri, C. V. (2023). Digital Education for the Deployment of Artificial Intelligence in Health Care. Journal of Medical Internet Research, 25, e43333. https://pmc.ncbi.nlm.nih.gov/articles/PMC10337407/
- Marangunic, N., & Granic, A. (2015). Technology acceptance model: A literature review from 1986 to 2013. Universal Access in the Information Society, 14(1), 81-95. https://doi.org/10.1007/s10209-014-0348-1
- Marikyan, D. & Papagiannidis, S. (2023). Technology Acceptance Model: A review. In S. Papagiannidis (Ed), Theory Hub Book. Available at https://open.ncl.ac.uk / ISBN: 9781739604400
- McCrae, R. R. (2009). The five-factor model of personality traits: Consensus and controversy. in P. J. Corr & G. Matthews (Eds.), The Cambridge handbook of personality psychology (pp. 148–161). Cambridge University Press. https://doi.org/10.1017/CBO9780511596544.012
- Mannuru N. R., Shahriar S., Teel, Z. A., Wang T., Lund B. D., Tijani S., Pohboon, C. O., Agbaji, D., Alhassan J., Galley J., Kousari R., Ogbadu-Oladapo L., Saurav S. K., Srivastava A., Tummuru S. P., Uppala S., Vaidya P. (2023). Artificial intelligence in developing countries: The impact of generative artificial intelligence (AI) technologies for development. Information Development 1–19. https://dx.doi.org/10.1177/02666669231200628
- Matzler, K., Bidmon, S., & Grabner‐Kräuter, S. (2006). Individual determinants of brand affect: the role of the personality traits of extraversion and openness to experience. Journal of product & brand management, 15(7), 427-434. https://doi.org/10.1108/10610420610712801
- Nieß, C., & Zacher, H. (2015). Openness to experience as a predictor and outcome of upward job changes into managerial and professional positions. PLoS ONE, 10. https://doi.org/10.1371/journal.pone.0131115
- Park, J., & Woo, S. E. (2022). Who likes artificial intelligence? Personality predictors of attitudes toward artificial intelligence. The Journal of Psychology, 156(1), 68–94. https://doi.org/10.1080/00223980.2021.2012109
- Pedro, F., Subosa, M., Rivas, A., & Valverde, P. (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development. Working Papers on Education Policy,7. UNESCO https://www.gcedclearinghouse.org/sites/default/files/resources/190175eng.pdf
- Roberts, B. W., Lejuez, C., Krueger, R. F., Richards, J. M., & Hill, P. L. (2014). What is conscientiousness and how can it be assessed? Developmental psychology, 50(5), 1315. https://doi.org/10.1037/a0031109
- Samoili, S., Lopez Cobo, M., Gomez Gutierrez, E., De Prato, G., Martinez-Plumed, F. and Delipetrev, B. (2020). AI WATCH. Defining Artificial Intelligence, https://doi.org/10.2760/382730.
- Schepman, A., & Rodway, P. (2020). Initial validation of the general attitudes toward Artificial Intelligence Scale. Computers in Human Behavior Reports, 1, 100014. https://doi.org/10.1016/j.chbr.2020.100014
- Sheikh, H., Prins, C., & Schrijvers, E. (2023). Artificial Intelligence: Definition and Background. In: Mission AI. Research for Policy. Springer. https://doi.org/10.1007/978-3-031-21448-6_2
- Singh, S. V., & Hiran, K. K. (2022). The impact of AI on teaching and learning in higher education technology. Journal of Higher Education Theory and Practice, 22(13). https://doi.org/10.33423/jhetp.v22i13.5514
- Soto, C. J., & John, O. P. (2014). Traits in transition: the structure of parent‐reported personality traits from early childhood to early adulthood. Journal of Personality, 82(3), 182-199. https://doi.org/10.1111/jopy.12044
- Tassone, D. (2023). Personality matters: predicting the acceptance of generative artificial intelligence through personality traits and job insecurity (Unpublished Master’s Dissertation, Universidade Católica Portugues, Portugal. https://repositorio.ucp.pt/bitstream/10400.14/42713/1/203327144.pdf
- Thomas, G. (2011). A typology for the case study in social science following a review of definition, discourse, and structure. Qualitative inquiry, 17(6), 511-521. https://doi.org/ 10.1177/1077800411409884
- Usher, E. L., & Pajares, F. (2008). Sources of self-efficacy in school: Critical review of the literature and future directions. Review of educational research, 78(4), 751-796. https://www.jstor.org/stable/40071145
- Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365. https://doi.org/10.1287/isre.11.4.342.11872
- Venkatesh, V., & Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. Decision Sciences, 39 (2), 273-315. https://doi.org/10.1111/j.1540-5915.2008.00192.x
- Wang, Y., Liu, C., & Tu, Y. F. (2021). Factors affecting the adoption of AI-based applications in higher education. Educational Technology & Society, 24(3), 116-129. https://www.jstor.org/stable/10.2307/27032860
- Wang, Y. Y., & Wang, Y. S. (2022). Development and validation of an artificial intelligence anxiety scale: An initial application in predicting motivated learning behavior. Interactive Learning Environments, 30(4), 619–634. https://doi.org/10.1080/10494820.2019.1674887
- Zorlu, S., & Ünver, G. (2022). Predictive roles of self-regulatory learning strategies and self-efficacy beliefs on English language learning achievement. Turkish Journal of Education, 11(2), 74-92. https://doi.org/10.19128/turje.841709
References
Aderibigbe, A. O., Ohenhen, P. E., Nwaobia, N. K., Gidiagba, J. O., & Ani, E. C. (2023). Artificial intelligence in developing countries: Bridging the gap between potential and implementation. Computer Science & IT Research Journal, 4(3), 185-199. https://doi.org/10.51594/csitrj.v4i3.629
Ajibade, P. (2018). Technology Acceptance model limitations and criticisms: exploring the practical applications and use in technology-related studies, mixed-method, and qualitative research. Library Philosophy and Practice (e-journal). 1941. http://digitalcommons.unl.edu/libphilprac/1941
Al-Kfairy, M. (2024). Factors impacting the adoption and acceptance of ChatGPT in educational settings: A narrative review of empirical studies. Applied System Innovation, 7(6), 110. https://doi.org/10.3390/asi7060110
Almaiah, M. A., Alfaisal, R., Salloum, S. A., Hajjej, F., Thabit, S., El-Qirem, F. A., Lufti, A., Alrawad, M., Mulhem, A. A., Alkhdour, T., Awad, A. B. & Al-Maroof, R. S. (2022). Examining the impact of artificial intelligence and social and computer anxiety in e-learning settings: students’ perceptions at the university level. Electronics, 11(22), 3662, 1-122. https://doi.org/10.3390/electronics11223662
Al Mesmari, S. (2023). Transforming data into actionable insights with cognitive computing and AI. Journal of Software Engineering and Applications, 16(6), 211-222. https://doi.org/10.4236/jsea.2023.166012
Alqahtani, T., Badreldin, H. A., Alrashed, M., Alshaya, A. I., Alghamdi, S. S., bin Saleh, K., Alowais, S. A., Alshaya, O. A., Rahman, I., Al Yami, M. S. & Albekairy, A. M. (2023). The emergent role of artificial intelligence, natural learning processing, and large language models in higher education and research. Research in Social and Administrative Pharmacy, 19(8), 1236-1242. https://doi.org/10.1016/j.sapharm.2023.05.016
Barnett, T., Pearson, A. W., Pearson, R., & Kellermanns, F. W. (2015). Five-factor model personality traits as predictors of perceived and actual usage of technology. European Journal of Information Systems, 24(4), 374-390. https://doi.org/10.1057/ejis.2014.10
Barrows, J., Dunn, S., & Lloyd, C. A. (2013). Anxiety, self-efficacy, and college exam grades. Universal Journal of Educational Research, 1(3), 204-208. https://doi.org/10.13189/ujer.2013.010310
Bleidorn, W., Hopwood, C. J., & Lucas, R. E. (2018). Life events and personality trait change. Journal of Personality, 86(1), 83-96. https://doi.org/10.1111/jopy.12286
Boguslawski, S., Deer, R., & Dawson, M. G. (2024). Programming education and learner motivation in the age of generative AI: student and educator perspectives. Information and Learning Sciences. https://dx.doi.org/10.1108/ILS-10-2023-0163
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3, 77–101. https://doi.org/10.1191/1478088706qp063oa
Chen, Y., Jensen, S., Albert, L. J., Gupta, S., & Lee, T. (2023). Artificial intelligence (AI) student assistants in the classroom: Designing chatbots to support student success. Information Systems Frontiers, 25(1), 161-182. https://doi.org/10.1007/s10796-022-10291-4
Chen, D., Liu, W., & Liu, X. (2024). What drives college students to use AI for L2 learning? Modeling the roles of self-efficacy, anxiety, and attitude based on an extended technology acceptance model. Acta Psychologica, 249, 104442. 1- 9. https://doi.org/10.1016/j.actpsy.2024.104442
Crompton, H., & Burke, D. (2023). Artificial intelligence in higher education: the state of the field. International Journal of Educational Technology in Higher Education, 20(1), 22. https://doi.org/10.1186/s41239-023-00392-8
Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, January-February, 108-116.
Devaraj, S., Easley, R. F., & Crant, J. M. (2008). Research note how does personality matter? Relating the five-factor model to technology acceptance and use. Information Systems Research, 19(1), 93–105. https://doi.org/10.1287/isre.1070.0153
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
Duarte, R., Nobre, Â. L., & De Oliveira Pires, A. L. (2018). Mature Learners’ Participation in Higher Education and Flexible Learning Pathways: Lessons Learned from an Exploratory Experimental Research (pp. 33–53). Springer. https://doi.org/10.1007/978-981-10-8917-6_2
Felix, C. V. (2020). The role of the teacher and AI in education. In International perspectives on the role of technology in humanizing higher education (pp. 33-48). http://dx.doi.org/10.1108/S2055-364120200000033003
George, A. S. (2023). Preparing students for an AI-driven world: Rethinking curriculum and pedagogy in the age of artificial intelligence. Partners Universal Innovative Research Publication, 1(2), 112-136. https://doi.org/10.5281/zenodo.10245675
Goodhue, D. (2007). Comment on Benbasat and Barki’s "Quo Vadis TAM" article. Journal of the Association for Information Systems, 8 (4), 219-222.
Grönroos, C. (1998). Marketing services: the case of a missing product. Journal of business & industrial marketing, 13(4/5), 322-338. https://doi.org/10.1108/08858629810226645
Hannan, E., & Liu, S. (2023). AI: new source of competitiveness in higher education. Competitiveness Review: An International Business Journal, 33(2), 265-279. https://doi.org/10.1108/CR-03-2021-0045sh
Hassan, S., Akhtar, N., & Yılmaz, A. K. (2016). Impact of the conscientiousness as a personality trait on both job and organizational performance. Journal of Managerial Sciences, 10(1). https://qurtuba.edu.pk/jms/default_files/JMS/10_1/JMS_January_June2016_1-14.pdf
Hong, J. C., Zhang, H. L., Ye, J. H., & Ye, J. N. (2021). The effects of academic self-efficacy on vocational students behavioral engagement at school and at firm internships: A model of engagement-value of achievement motivation. Education Sciences, 11(8), 387. https://doi.org/10.3390/educsci11080387
Hutson, J., Jeevanjee T., Vander Graaf, V., Lively, J., Weber, J., Weir, G., Arnone, K., Carnes, G., Vosevich, K., Plate, D., Leary, M., & Edele, S. (2022). Artificial intelligence and the disruption of higher education: Strategies for integrations across disciplines. Creative Education, 13(12), 3953-3980. https://dx.doi.org/10.4236/ce.2022.1312253
Ivanov, S. (2023). The dark side of artificial intelligence in higher education. The Service Industries Journal, 43, 15-16, 1055-1082, https://doi.org/10.1080/02642069.2023.2258799
Jie, A. L. X., & Kamrozzaman, N. A. (2024). The challenges higher education students face in using artificial intelligence (AI) against their learning experiences. Open Journal of Social Sciences, 12, 362-387. https://doi.org/10.4236/jss.2024.1210025
Kim, J., Kadkol, S., Solomon, I., Yeh, H., Soh, J. Y., Nguyen, T. M., Choi, J. Y., Lee, S., Srivatsa, A. V., Nahass, G. R., & Ajilore, O. A. (2023). AI anxiety: A comprehensive analysis of psychological factors and interventions. SSRN Electronic Journal 4573394. https://doi.org/10.2139/ssrn.4573394
King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information & management 43(6): 740-755. https://doi.org/10.1016/j.im.2006.05.003
Kshetri, N. (2020)."Artificial intelligence in developing countries” IEEE IT Professional, 22(4) 63 - 68. https://doi.org/10.1109/MITP.2019.2951851
Li, J., & Huang, J. S. (2020). Dimensions of artificial intelligence anxiety based on the integrated fear acquisition theory. Technology in Society, 63, 101410. https://doi.org/10.1016/j.techsoc.2020.101410
Lievano-Martínez, F. A., Fernández-Ledesma, J. D., Burgos, D., Branch-Bedoya, J. W., & Jimenez-Builes, J. A. (2022). Intelligent Process Automation: An Application in Manufacturing Industry. Sustainability, 14, 8804. https://doi.org/10.3390/su14148804
Lucas, R. E., & Donnellan, M. B. (2011). Personality development across the life span: Longitudinal analyses with a national sample from Germany. Journal of Personality and Social Psychology, 101, 847–861. https://psycnet.apa.org/doi/10.1037/a0024298
Malerbi, F. K., Nakayama, L. F., Dychiao, R. G., Ribeiro, L. Z., Villanueva, C., Celi, L. A., & Regatieri, C. V. (2023). Digital Education for the Deployment of Artificial Intelligence in Health Care. Journal of Medical Internet Research, 25, e43333. https://pmc.ncbi.nlm.nih.gov/articles/PMC10337407/
Marangunic, N., & Granic, A. (2015). Technology acceptance model: A literature review from 1986 to 2013. Universal Access in the Information Society, 14(1), 81-95. https://doi.org/10.1007/s10209-014-0348-1
Marikyan, D. & Papagiannidis, S. (2023). Technology Acceptance Model: A review. In S. Papagiannidis (Ed), Theory Hub Book. Available at https://open.ncl.ac.uk / ISBN: 9781739604400
McCrae, R. R. (2009). The five-factor model of personality traits: Consensus and controversy. in P. J. Corr & G. Matthews (Eds.), The Cambridge handbook of personality psychology (pp. 148–161). Cambridge University Press. https://doi.org/10.1017/CBO9780511596544.012
Mannuru N. R., Shahriar S., Teel, Z. A., Wang T., Lund B. D., Tijani S., Pohboon, C. O., Agbaji, D., Alhassan J., Galley J., Kousari R., Ogbadu-Oladapo L., Saurav S. K., Srivastava A., Tummuru S. P., Uppala S., Vaidya P. (2023). Artificial intelligence in developing countries: The impact of generative artificial intelligence (AI) technologies for development. Information Development 1–19. https://dx.doi.org/10.1177/02666669231200628
Matzler, K., Bidmon, S., & Grabner‐Kräuter, S. (2006). Individual determinants of brand affect: the role of the personality traits of extraversion and openness to experience. Journal of product & brand management, 15(7), 427-434. https://doi.org/10.1108/10610420610712801
Nieß, C., & Zacher, H. (2015). Openness to experience as a predictor and outcome of upward job changes into managerial and professional positions. PLoS ONE, 10. https://doi.org/10.1371/journal.pone.0131115
Park, J., & Woo, S. E. (2022). Who likes artificial intelligence? Personality predictors of attitudes toward artificial intelligence. The Journal of Psychology, 156(1), 68–94. https://doi.org/10.1080/00223980.2021.2012109
Pedro, F., Subosa, M., Rivas, A., & Valverde, P. (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development. Working Papers on Education Policy,7. UNESCO https://www.gcedclearinghouse.org/sites/default/files/resources/190175eng.pdf
Roberts, B. W., Lejuez, C., Krueger, R. F., Richards, J. M., & Hill, P. L. (2014). What is conscientiousness and how can it be assessed? Developmental psychology, 50(5), 1315. https://doi.org/10.1037/a0031109
Samoili, S., Lopez Cobo, M., Gomez Gutierrez, E., De Prato, G., Martinez-Plumed, F. and Delipetrev, B. (2020). AI WATCH. Defining Artificial Intelligence, https://doi.org/10.2760/382730.
Schepman, A., & Rodway, P. (2020). Initial validation of the general attitudes toward Artificial Intelligence Scale. Computers in Human Behavior Reports, 1, 100014. https://doi.org/10.1016/j.chbr.2020.100014
Sheikh, H., Prins, C., & Schrijvers, E. (2023). Artificial Intelligence: Definition and Background. In: Mission AI. Research for Policy. Springer. https://doi.org/10.1007/978-3-031-21448-6_2
Singh, S. V., & Hiran, K. K. (2022). The impact of AI on teaching and learning in higher education technology. Journal of Higher Education Theory and Practice, 22(13). https://doi.org/10.33423/jhetp.v22i13.5514
Soto, C. J., & John, O. P. (2014). Traits in transition: the structure of parent‐reported personality traits from early childhood to early adulthood. Journal of Personality, 82(3), 182-199. https://doi.org/10.1111/jopy.12044
Tassone, D. (2023). Personality matters: predicting the acceptance of generative artificial intelligence through personality traits and job insecurity (Unpublished Master’s Dissertation, Universidade Católica Portugues, Portugal. https://repositorio.ucp.pt/bitstream/10400.14/42713/1/203327144.pdf
Thomas, G. (2011). A typology for the case study in social science following a review of definition, discourse, and structure. Qualitative inquiry, 17(6), 511-521. https://doi.org/ 10.1177/1077800411409884
Usher, E. L., & Pajares, F. (2008). Sources of self-efficacy in school: Critical review of the literature and future directions. Review of educational research, 78(4), 751-796. https://www.jstor.org/stable/40071145
Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365. https://doi.org/10.1287/isre.11.4.342.11872
Venkatesh, V., & Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. Decision Sciences, 39 (2), 273-315. https://doi.org/10.1111/j.1540-5915.2008.00192.x
Wang, Y., Liu, C., & Tu, Y. F. (2021). Factors affecting the adoption of AI-based applications in higher education. Educational Technology & Society, 24(3), 116-129. https://www.jstor.org/stable/10.2307/27032860
Wang, Y. Y., & Wang, Y. S. (2022). Development and validation of an artificial intelligence anxiety scale: An initial application in predicting motivated learning behavior. Interactive Learning Environments, 30(4), 619–634. https://doi.org/10.1080/10494820.2019.1674887
Zorlu, S., & Ünver, G. (2022). Predictive roles of self-regulatory learning strategies and self-efficacy beliefs on English language learning achievement. Turkish Journal of Education, 11(2), 74-92. https://doi.org/10.19128/turje.841709